История открытия
Один из основных минералов марганца — пиролюзит — был известен в древности как чёрная магнезия и использовался при варке стекла для его осветления. Его считали разновидностью магнитного железняка, а тот факт, что он не притягивается магнитом, Плиний Старший объяснил женским полом чёрной магнезии, к которому магнит «равнодушен». В 1774 году шведский химик К. Шееле показал, что в руде содержится неизвестный металл. Он послал образцы руды своему другу химику Ю. Гану, который, нагревая в печке пиролюзит с углем, получил металлический марганец. В начале XIX века для него было принято название «манганум» (от нем. Manganerz — марганцевая руда).
Хранение и транспортировка
Так как марганцевые руды бывают окисные, окисленные, карбонатные и смешанные, то и хранить их следует отдельно друг от друга на расстоянии не менее 120 м от других пылеобразующих материалов, в случае размещения на открытых площадках. При этом поверхность, на которой они располагаются должна быть асфальтирована или бетонирована.
Перевозка сырья, как правило, осуществляется железнодорожным, иногда – судоходным транспортом. Руду размещают навалом, но с учётом возможного смещения в сторону естественного уклона. Грузовые параметры, на которые следует ориентироваться при транспортировке таковы:
- Насыпная масса – 2 т/м3.
- Погрузочный объём – 0,5 м3т.
Распространённость в природе
Марганец — 14-й элемент по распространённости на Земле, а после железа — второй тяжёлый металл, содержащийся в земной коре (0,03 % от общего числа атомов земной коры). Массовая доля марганца увеличивается от кислых (600 г/т) к основным породам (2,2 кг/т). Сопутствует железу во многих его рудах, однако встречаются и самостоятельные месторождения марганца. В чиатурском месторождении (район Кутаиси) сосредоточено до 40 % марганцевых руд. Марганец, рассеянный в горных породах, вымывается водой и уносится в Мировой океан. При этом его содержание в морской воде незначительно (10−7—10−6 %), а в глубоких местах океана его концентрация возрастает до 0,3 % вследствие окисления растворённым в воде кислородом с образованием нерастворимого в воде оксида марганца, который в гидратированной форме (MnO2·x
H2O) и опускается в нижние слои океана, формируя так называемые железомарганцевые конкреции на дне, в которых количество марганца может достигать 45 % (также в них имеются примеси меди, никеля, кобальта). Такие конкреции могут стать в будущем источником марганца для промышленности.
В России является остродефицитным сырьём, известны месторождения: «Усинское»
в Кемеровской области,
«Полуночное»
в Свердловской,
«Порожинское»
в Красноярском крае,
«Южно-Хинганское»
в Еврейской автономной области,
«Рогачёво-Тайнинская» площадь
и
«Северо-Тайнинское» поле
на Новой Земле.
Минералы марганца
- пиролюзит MnO2·x
H2O, самый распространённый минерал (содержит 63,2 % марганца); - манганит (бурая марганцевая руда) MnO(OH) (62,5 % марганца);
- браунит 3Mn2O3·MnSiO3 (69,5 % марганца);
- гаусманит (MnIIMn2III)O4;
- родохрозит (марганцевый шпат, малиновый шпат) MnCO3 (47,8 % марганца);
- псиломелан m
MnO·MnO2·
n
H2O (45-60 % марганца); - пурпурит Mn3+[PO4], (36,65 % марганца).
Месторождения в России и мире
На Государственном балансе Российской Федерации, по состоянию на начало 2021 года, числилось 29 месторождений, содержащих марганцевые руды. Крупнейшими среди них являются:
- Усинское, Дурновское – Кемеровская область.
- Порожинское – Красноярский край.
- Южно-Хинганское – Еврейская АО.
- Парнокское – республика Коми.
- Североуральские – на Урале.
- Новониколаевское в Иркутской области.
Среди иностранных государств значительными залежами марганцевых руд обладают:
- Украина – Никопольский район.
- Грузия – Чиатурский район.
- Южная Африка – район Калахари.
- Габон – месторождение Моанда.
- Гана – месторождение Нсута.
- Мексика – месторождение Моланго.
- Бразилия – район Амапа, месторождение Серро де Навио.
- Австралия – месторождение ГрутЭйланд.
Физические свойства
Некоторые свойства приведены в таблице. Другие свойства марганца:
- Работа выхода электрона: 4,1 эВ
- Коэффициент теплового расширения: 0,000022 K−1 (при 0 °C)
- Электропроводность: 0,00695⋅106 Ом−1·см−1
- Теплопроводность: 0,0782 Вт/(см·K)
- Энтальпия атомизации: 280,3 кДж/моль при 25 °C
- Энтальпия плавления: 14,64 кДж/моль
- Энтальпия испарения: 219,7 кДж/моль
- Твёрдость: по шкале Бринелля: Мн/м²
- по шкале Мооса: 4
Использование
Основная часть продукции, содержащей manganum, идет на нужды сталелитейной промышленности. Она потребляет ферромарганец для производства сталей и чугуна.
Рекомендуем: КАДМИЙ — токсичный, тяжелый и редкий
Применение марганца обосновано в промышленностях:
- стекольной;
- фармацевтической;
- стекольной;
- электротехнической;
- лакокрасочной.
Mn(OH₂) применяют в текстильной промышленности, как коричневую краску.
В производстве олифы соединения металла применяют, как сиккатив.
Большое количество марганца идет в электротехническую промышленность, для производства сухих батарей.
Перманганат калия (в просторечии марганцовка) — антисептик. Применяется для полоскания горла, обработки ожогов, промывания ран. Как рвотное применяют внутрь.
Химические свойства
Стандартный окислительно-восстановительные потенциалы по отношению к водородному электроду
Окисленная форма | Восстановленная форма | Среда | E 0, В |
Mn2+ | Mn | H+ | −1,186 |
Mn3+ | Mn2+ | H+ | +1,51 |
MnO2 | Mn3+ | H+ | +0,95 |
MnO2 | Mn2+ | H+ | +1,23 |
MnO2 | Mn(OH)2 | OH− | −0,05 |
MnO42− | MnO2 | H+ | +2,26 |
MnO42− | MnO2 | OH− | +0,62 |
MnO4− | MnO42− | OH− | +0,56 |
MnO4− | H2MnO4 | H+ | +1,22 |
MnO4− | MnO2 | H+ | +1,69 |
MnO4− | MnO2 | OH− | +0,60 |
MnO4− | Mn2+ | H+ | +1,51 |
Диаграмма Пурбе для марганца
Характерные степени окисления марганца: 0, +2, +3, +4, +6, +7 (степени окисления +1, +5 малохарактерны).
При окислении на воздухе пассивируется. Порошкообразный марганец сгорает в кислороде:
Mn + O2 ⟶ MnO2
Марганец при нагревании разлагает воду, вытесняя водород:
Mn + 2H2O →∘t Mn(OH)2 + H2↑
При этом слой образующегося гидроксида марганца замедляет реакцию.
Марганец поглощает водород, с повышением температуры его растворимость в марганце увеличивается. При температуре выше 1200 °C взаимодействует с азотом, образуя различные по составу нитриды.
Углерод реагирует с расплавленным марганцем, образуя карбиды Mn3C и другие. Образует также силициды, бориды, фосфиды.
С соляной и серной кислотами реагирует по уравнению
Mn + 2H+ ⟶ Mn2+ + H2↑
С концентрированной серной кислотой реакция идёт по уравнению
Mn + 2H2SO4 ⟶ MnSO4 + SO2↑ + 2H2O
С разбавленной азотной кислотой реакция идёт по уравнению
3Mn + 8HNO3 ⟶ 3Mn(NO3)2 + 2NO↑ + 4H2O
В щелочном растворе марганец устойчив.
Марганец образует следующие оксиды: MnO, Mn2O3, MnO2, MnO3 (не выделен в свободном состоянии) и марганцевый ангидрид Mn2O7.
Mn2O7 в обычных условиях — жидкое маслянистое вещество тёмно-зелёного цвета, очень неустойчивое; в смеси с концентрированной серной кислотой воспламеняет органические вещества. При 90 °C Mn2O7 разлагается со взрывом. Наиболее устойчивы оксиды Mn2O3 и MnO2, а также комбинированный оксид Mn3O4 (2MnO·MnO2, или соль Mn2MnO4).
При сплавлении оксида марганца IV (пиролюзит) со щелочами в присутствии кислорода образуются манганаты:
2MnO2 + 4KOH + O2 ⟶ 2K2MnO4 + 2H2O
Раствор манганата имеет тёмно-зелёный цвет. При подкислении протекает реакция
3K2MnO4 + 3H2SO4 ⟶ 3K2SO4 + 2HMnO4 + MnO(OH)2↓ + H2O
Раствор окрашивается в малиновый цвет из-за появления аниона MnO4−, и из него выпадает коричневый осадок оксида-гидроксида марганца (IV).
Марганцевая кислота очень сильная, но неустойчивая, её невозможно сконцентрировать более, чем до 20 %. Сама кислота и её соли (перманганаты) — сильные окислители. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).
При прокаливании перманганаты разлагаются с выделением кислорода (один из лабораторных способов получения чистого кислорода). Реакция идёт по уравнению (на примере перманганата калия)
2KMnO4 →∘t K2MnO4 + MnO2 + O2
Под действием сильных окислителей ион Mn2+ переходит в ион MnO4−:
2MnSO4 + 5PbO2 + 6HNO3 ⟶ 2HMnO4 + 2PbSO4 + 3Pb(NO3)2 + 2H2O
Эта реакция используется для качественного определения Mn2+ (см. в разделе «Определение методами химического анализа»).
При подщелачивании растворов солей Mn (II) из них выпадает осадок гидроксида марганца (II), быстро буреющий на воздухе в результате окисления. Подробное описание реакции см. в разделе «Определение методами химического анализа». В нейтральных или кислых водных растворах ион Mn2+ образует окрашенный в бледно-розовый цвет аквакомплекс [Mn(H2O)6]2+.
Соли MnCl3, Mn2(SO4)3 неустойчивы. Гидроксиды Mn(OH)2 и Mn(OH)3 имеют основный характер, MnO(OH)2 — амфотерный. Хлорид марганца (IV) MnCl4 очень неустойчив, разлагается при нагревании, чем пользуются для получения хлора:
MnO2 + 4HCl ⟶ MnCl2 + Cl2↑ + 2H2O
Нулевая степень окисления у марганца проявляется в соединениях с σ-донорными и π-акцепторными лигандами. Так, для марганца и известен карбонил состава Mn2(CO)10.
Известны и другие соединения марганца с σ-донорными и π-акцепторными лигандами (PF3, NO, N2, P(C5H5)3).
Суточная потребность
Потребность в Mn зависит не только от возраста, но и от ряда других факторов.
Категория | Суточная потребность |
Дети до 2 лет | 0,3 |
Дети 3-5 лет | 0,5-0,6 |
Дети 6-8 лет | 0,7-0,8 |
Дети 9-13 лет | 1 |
Мальчики-подростки | 2 |
Девочки-подростки | 1,5 |
Взрослые мужчины | 3-5 |
Взрослые женщины | 2,5-3 |
Беременные, кормящие | До 5 |
При физических нагрузках, тяжело протекающих заболеваниях потребность в марганце увеличивается до 11 мг в сутки.
Изотопы
Основная статья: Изотопы марганца
Марганец является моноизотопным элементом — в природе существует только один устойчивый изотоп 55Mn. Все другие изотопы марганца нестабильны и радиоактивны, они получены искусственно. Известны 25 радиоактивных изотопов марганца, имеющие массовое число А
в диапазоне от 44 до 70. Наиболее стабильными из них являются 53Mn (период полураспада
T
1/2 = 3,7 млн лет), 54Mn (
T
1/2 = 312,3 суток) и 52Mn (
T
1/2 = 5,591 суток). Преобладающим каналом распада лёгких изотопов марганца (А < 55) является электронный захват (и иногда конкурирующий с ним позитронный распад) в соответствующие изотопы хрома. У тяжёлых изотопов (А > 55) основным каналом распада является β−-распад в соответствующие изотопы железа. Известны также 7 изомеров (метастабильных возбуждённых состояний) с периодами полураспада более 100 нс.
Получение марганца
Металл можно получить несколькими способами. Среди наиболее популярных методов выделяют следующие:
- алюминотермический. Марганец получается из его оксида Mn2O3 путем восстановительной реакции. Оксид, в свою очередь, образуется во время прокаливания пиролюзита:
4MnO2 = 2Mn2O3+O2
Mn2O3+2Al = 2Mn+Al2O3
- восстановительный. Марганец получают путем восстановления металла коксом из марганцевых руд, в результате чего образуется ферромарганец (сплав марганца и железа). Данный метод является наиболее распространенным, так как основная масса от общей добычи металла используется во время производства разнообразных сплавов, основным компонентом которых является железо, в связи с этим из руд марганец извлекают не в чистом виде, а в сплаве с ним;
- электролиза. Металл в чистом виде получают с помощью данного способа из его солей.
Применение в промышленности
Применение в металлургии
Марганец в виде ферромарганца применяется для раскисления стали при её плавке, то есть для удаления из неё кислорода. Кроме того, он связывает серу, что также улучшает свойства сталей. Введение до 12—13 % Mn в сталь (так называемая сталь Гадфильда), иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает её твёрдой и сопротивляющейся износу и ударам (т. н. «наклёп»). Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин, броневых элементов и т. д. В «зеркальный чугун» вводится до 20 % Mn.
В 1920—1940-х годах применение марганца позволяло выплавлять броневую сталь. В начале 1950-х годов в журнале «Сталь» возникла дискуссия по вопросу о возможности снижения содержания марганца в чугуне, и тем самым отказа от поддержки определённого содержания марганца в процессе мартеновской плавки, в которой вместе с В. И. Явойским и В. И. Баптизманским принял участие Е. И. Зарвин, который на основе производственных экспериментов показал нецелесообразность существовавшей технологии. Позже он показал возможность ведения мартеновского процесса на маломарганцовистом чугуне. С пуском ЗСМК началась разработка передела низкомарганцовистых чугунов в конвертерах.
Сплав 83 % Cu, 13 % Mn и 4 % Ni (манганин) обладает высоким электросопротивлением, мало изменяющимся с изменением температуры. Поэтому его применяют для изготовления реостатов и пр.
Марганец вводят в бронзы и латуни.
Применение в химии
Значительное количество диоксида марганца потребляется при производстве марганцево-цинковых гальванических элементов, MnO2 используется в таких элементах в качестве окислителя-деполяризатора.
Соединения марганца также широко используются как в тонком органическом синтезе (MnO2 и KMnO4 в качестве окислителей), так и промышленном органическом синтезе (компоненты катализаторов окисления углеводородов, например, в производстве терефталевой кислоты окислением p
-ксилола, окисление парафинов в высшие жирные кислоты).
Арсенид марганца обладает гигантским магнитокалорическим эффектом, усиливающимся под давлением.
Теллурид марганца — перспективный термоэлектрический материал (термо-ЭДС 500 мкВ/К).
Физиологическое действие
Содержание марганца в организме взрослого человека невелико, 10-20 мг. Это намного меньше, чем содержание других металлов – калия, кальция, железа, натрия, меди, цинка. Поэтому Mn поначалу не относили к жизненно необходимым элементам, и полагали, что его присутствие в организме вовсе не является обязательным.
Действительно, не все разновидности этого микроэлемента для нас представляют интерес. В физиологических процессах участвует двухвалентный и трехвалентный марганец, Mn (II) и Mn (III).
Физиологическая ценность заключается в том, что он регулирует всасывание многих других полезных веществ (нутриентов). Среди этих нутриентов – медь, витамины группы В, в частности, вит. В1(Тиамин) и вит. В4 (Холин). Кроме того, он позитивно влияет на всасывание вит. Е (Токоферола) и вит. С (Аскорбиновой кислоты). Эти витамины являются сильными антиоксидантами.
Соответственно, и марганец тоже оказывает антиоксидантное действие. Будучи антиоксидантом, он связывает свободные радикалы, и предупреждает повреждение ими клеток. Тем самым укрепляет иммунитет и препятствует формированию злокачественных новообразований.
Кроме того, Mn входит в состав многих ферментных систем. Больше всего этого микроэлемента в митохондриях, где он участвует в накоплении энергии в виде молекул АТФ. Кроме того, он обеспечивает метаболизм (обмен) углеводов, белков и липидов (жиров). Он стимулирует катаболические процессы с расщеплением веществ и ускорением обменных реакций.
В ходе утилизации белков под действием марганца происходит их расщепление с образованием конечных азотистых продуктов, мочевины и креатинина. В итоге выделяется энергия. Этот процесс имеет большое практическое значение при выполнении физической работы.
Он способствует синтезу жирных кислот, облегчает усваивание липидов, и участвует в их расщеплении. Липиды – энергоемкие соединения, и благодаря ему они расходуются полноценно с высвобождением максимального количества энергии. При этом Mn предупреждает отложение жировых масс в подкожном слое с развитием ожирения.
С расходом жиров снижается продукция низкоплотного холестерина, и он не откладывается на стенках сосудов в виде атеросклеротических бляшек. Кроме того, марганец в значительной степени предотвращает жировую инфильтрацию печени (жировой гепатоз). Благодаря Mn улучшается функция печени по связыванию и выведению вместе с желчью многих токсических соединений.
Кроме того, Mn осуществляет депонирование, накопление, гликогена в печени и в скелетных мышцах. Вообще, действие его на углеводный метаболизм многообразно. Оказывает инсулиноподобное действие, способствует транспорту глюкозы внутрь клетки и ее последующее расщепление с образованием АТФ. Именно поэтому он сосредоточен в митохондриях.
Вместе с тем, по некоторым данным при дефиците глюкозы он способен запускать процессы гликонеогенеза, синтеза глюкозы из белковых и липидных соединений. Еще микроэлемент способствует распространению нервных импульсов, т.к. участвует в синтезе веществ-нейромедиаторов.
Стимуляция марганцем метаболических процессов в мышечной ткани приводит к повышению мышечной силы и выносливости. Кроме того, он укрепляет кости. Еще он формирует хрящи, регулирует состав внутрисуставной или синовиальной жидкости. Тем самым Mn улучшает состояние и функцию суставов, препятствует развитию в них дегенеративных и воспалительных процессов.
Вместе с медью он участвует в кроветворении, стимулирует свертывание крови. А еще этот микроэлемент оказывает омолаживающее действие. Кожа под его влиянием становится упругой и эластичной. Замедляются естественные процессы, связанные со старением.
Кроме того, он повышает устойчивость кожи к действию ультрафиолетовых лучей и препятствует развитию злокачественных кожных онкозаболеваний.
Влияние его на состояние органов и систем в немалой степени реализуется через эндокринную систему. Он усиливает действие инсулина. Именно благодаря этому усваивается глюкоза и снижается риск сахарного диабета.
Еще этот микроэлемент оказывает стимулирующее действие на систему гипофиз-надпочечники. Марганец увеличивает выработку гормонов щитовидной железой.
Аналогичным образом Mn действует на мужские и женские половые гормоны. Он активирует сперматогенез у мужчин, участвует в регуляции менструального цикла у женщин, у обоих полов предупреждает бесплодие. При развившейся беременности марганец наряду с другими нутриентами формирует органы и ткани у плода. После родов стимулирует лактацию.
Определение методами химического анализа
Марганец принадлежит к пятой аналитической группе катионов.
Специфические реакции, используемые в аналитической химии для обнаружения катионов Mn2+, следующие:
1. Едкие щёлочи
с солями марганца (II) дают белый осадок гидроксида марганца (II):
MnSO4 + 2KOH → Mn(OH)2↓ + K2SO4 Mn2+ + 2OH− → Mn(OH)2↓
Осадок на воздухе меняет цвет на бурый из-за окисления кислородом воздуха.
Выполнение реакции.
К двум каплям раствора соли марганца добавляют две капли раствора щёлочи. Наблюдают изменение цвета осадка.
2. Пероксид водорода
в присутствии щёлочи окисляет соли марганца (II) до тёмно-бурого соединения марганца (IV):
MnSO4 + H2O2 + 2NaOH → MnO(OH)2↓ + Na2SO4 + H2O Mn2+ + H2O2 + 2OH− → MnO(OH)2↓ + H2O
Выполнение реакции.
К двум каплям раствора соли марганца добавляют четыре капли раствора щёлочи и две капли раствора H2O2.
3. Диоксид свинца PbO2
в присутствии концентрированной азотной кислоты при нагревании окисляет Mn2+ до MnO4− с образованием марганцевой кислоты малинового цвета:
2MnSO4 + 5PbO2 + 6HNO3 → 2HMnO4 + 2PbSO4↓ + 3Pb(NO3)2 + 2H2O 2Mn2+ + 5PbO2 + 4H+ → 2MnO4− + 5Pb2+ + 2H2O
Эта реакция даёт отрицательный результат в присутствии восстановителей, например хлороводородной кислоты и её солей, так как они взаимодействуют с диоксидом свинца, а также с образовавшейся марганцевой кислотой. При больших количествах марганца провести эту реакцию не удаётся, так как избыток ионов Mn2+ восстанавливает образующуюся марганцевую кислоту HMnO4 до MnO(OH)2, и вместо малиновой окраски появляется бурый осадок. Вместо диоксида свинца для окисления Mn2+ в MnO4− могут быть использованы другие окислители, например, персульфат аммония (NH4)2S2O8 в присутствии катализатора — ионов Ag+ или висмутат натрия NaBiO3:
2MnSO4 + 5NaBiO3 + 16HNO3 → 2HMnO4 + 5Bi(NO3)3 + NaNO3 + 2Na2SO4 + 7H2O
Выполнение реакции.
В пробирку вносят стеклянным шпателем немного PbO2, а затем 5 капель концентрированной азотной кислоты HNO3 и нагревают смесь на кипящей водяной бане. В нагретую смесь добавляют 1 каплю раствора сульфата марганца II MnSO4 и снова нагревают 10—15 мин, встряхивая время от времени содержимое пробирки. Дают избытку диоксида свинца осесть и наблюдают малиновую окраску образовавшейся марганцевой кислоты.
При окислении висмутатом натрия реакцию проводят следующим образом. В пробирку помещают 1—2 капли раствора сульфата марганца (II) и 4 капли 6 н. HNO3, добавляют несколько крупинок висмутата натрия и встряхивают. Наблюдают появление малиновой окраски раствора.
4. Сульфид аммония (NH4)2S
осаждает из раствора солей марганца сульфид марганца II, окрашенный в телесный цвет:
MnSO4 + (NH4)2S → MnS↓ + (NH4)2SO4 Mn2+ + S2− → MnS↓
Осадок легко растворяется в разбавленных минеральных кислотах и даже в уксусной кислоте.
Выполнение реакции.
В пробирку помещают 2 капли раствора соли марганца (II) и добавляют 2 капли раствора сульфида аммония.
Структура и состав
Описаны 4 структурные модификации вещества, каждая из которых устойчива в определенном температурном интервале. Сплавление с определенными металлами может стабилизировать любую фазу.
- До 707 С устойчивой является а-модификация. – кубическая объемно-центрированная решетка, в состав элементарной ячейки которой входит 58 атомов. Такая структура очень сложна и обуславливает высокую хрупкость вещества. Его показатели – теплоемкость, теплопроводность, плотность, приводятся как свойства вещества.
- При 700–1079 С устойчивой является b-фаза с таким же типом решетки, но с более простым строением: ячейку составляет 20 атомов. В этой фазе марганец проявляет определенную пластичность. Плотность b-модификации – 7,26 г/куб. см. Фазу легко зафиксировать – закалкой вещества при температуре выше температуры фазового перехода.
- При температурах от 1079 С до 1143 С g-фаза стабильна. Для нее характерна кубическая гранецентрированная решетка с ячейкой из 4 атомов. Модификация отличается пластичностью. Однако зафиксировать фазу полностью при охлаждении не удается. При температуре перехода плотность металла составляет 6,37 г/куб. см, при нормальной – 7, 21 г/куб. см.
- Выше температуры 1143 С и до кипения стабилизируется d-фаза с объемно-центрированной кубической решеткой, ячейка которой включает 2 атома. Плотность модификации составляет 6,28 г/куб. см. Интересно то, что d-Mn может перейти в антиферромагнитное состояние при высокой температуре – 303 С.
Фазовые переходы имеют большое значение при получении разнообразных сплавов, тем более что физические характеристики структурных модификаций отличаются.
Производство марганца описано ниже.
Биологическая роль и содержание в живых организмах
Марганец содержится в организмах всех растений и животных, хотя его содержание обычно очень мало, порядка тысячных долей процента, он оказывает значительное влияние на жизнедеятельность, то есть является микроэлементом. Марганец оказывает влияние на рост, образование крови и функции половых желёз. Особо богаты марганцем листья свёклы — до 0,03 %, а также большие его количества содержатся в организмах рыжих муравьёв — до 0,05 %. Некоторые бактерии содержат до нескольких процентов марганца.
Избыточное накопление марганца в организме сказывается, в первую очередь, на функционировании центральной нервной системы. Это проявляется в утомляемости, сонливости, ухудшении функций памяти. Марганец является политропным ядом, поражающим также лёгкие, сердечно-сосудистую и гепатобиллиарную системы, вызывает аллергический и мутагенный эффект.
В каких продуктах содержится?
Марганец поступает к нам преимущественно с растительными продуктами. В животной пище его количество невелико.
Содержание в 100 г продуктов:
Продукт | Содержание, мг/100 г |
Ростки пшеницы | 12,3 |
Хлеб из муки цельного помола | 1,9 |
Фундук | 4,9 |
Миндаль | 1,92 |
Фисташки | 3,8 |
Соя | 1,42 |
Рис | 1,1 |
Арахис | 1,93 |
Какао-бобы | 1,8 |
Горошек | 0,3 |
Грецкий орех | 1,9 |
Шпинат | 0,9 |
Чеснок | 0,81 |
Абрикос | 0,2 |
Ананас | 0,75 |
Свекла | 0,66 |
Макаронные изделия | 0,58 |
Капуста белокочанная | 0,35 |
Картофель | 0,35 |
Шиповник | 0,5 |
Шампиньоны | 0,7 |
Следует учитывать, что при рафинировании значительное количество марганца теряется. То же самое касается термической обработки, особенно варки. Поэтому предпочтение следует отдавать сырым продуктам.
Токсичность
Основная статья: Отравление марганцем
Токсическая доза для человека составляет 40 мг марганца в день. Летальная доза для человека не определена.
При пероральном поступлении марганец относится к наименее ядовитым микроэлементам. Главными признаками отравления марганцем у животных являются угнетение роста, понижение аппетита, нарушение метаболизма железа и изменение функции мозга.
Сообщений о случаях отравления марганцем у людей, вызванных приёмом пищи с высоким содержанием марганца, нет. В основном отравление людей наблюдается в случаях хронической ингаляции больших количеств марганца на производстве. Оно проявляется в виде тяжёлых нарушений психики, включая гиперраздражительность, гипермоторику и галлюцинации — «марганцевое безумие». В дальнейшем развиваются изменения в экстрапирамидной системе, подобные болезни Паркинсона.
Чтобы развилась клиническая картина хронического отравления марганцем, обычно требуется несколько лет. Она характеризуется достаточно медленным нарастанием патологических изменений в организме, вызываемых повышенным содержанием марганца в окружающей среде (в частности, распространение эндемического зоба, не связанного с дефицитом йода).
Плюсы и минусы
Рассмотрим характеристики сплавов марганца.
Достоинства | Недостатки |
Химическая активность металла дает возможность получать множество соединений с различными свойствами | Высокая твердость в сочетании с хрупкостью ограничивает применение металла |
Марганец образует сплавы практически со всеми металлами | Низкая электропроводность не позволяет использовать элемент в электротехнике |
В сталелитейной промышленности сплавы с углеродом и кремнием незаменимы | Высокая температура кипения затрудняет работу с металлом |
Соединения железа и марганца в любом соотношении образуют твердые растворы | Недостатки металла — следствие особенностей его структуры |
Трудно переоценить значение металла, как лигатуры.