Общая характеристика
Название «моносахариды» с греческого переводится как «одиночный сахар». Эти простые углеводы состоят из одного элемента и не могут быть разбиты на более мелкие блоки. Моносахариды являют собой самую простую форму углеводов, но они могут объединяться, образовывая более сложные соединения. Например, 2 моносахарида создают дисахариды, соединение от 3 до 10 элементов – это уже олигосахариды, а 11 больше моносахаридов, связанных воедино, образуют полисахариды.
Содержание:
- Общая характеристика
- Классификация простых углеводов
- Изомеры моносахаридов
- Биохимические свойства
- Функции простых сахаров
- Моносахариды и сахар в крови
- В роли питательных веществ
- Характеристика пищевых моносахаров
- Потребность в моносахаридах
Исследователям впервые удалось получить глюкозу в 1811 году: русский ученый Константин Сигизмунд гидролизовал это вещество из крахмала, а через 33 года другой русский ученый К. Шмидт придумал углеводам их название.
В пище моносахариды представлены 3 веществами: глюкозой, фруктозой, галактозой.
В природе простейшие углеводы обычно представлены в форме глюкозы.
Все они обладают общей формулой – С6Н12О6. И поскольку каждый из них имеет в составе 6 атомов углерода, принадлежат к гексозной группе. Меж тем, несмотря на общую молекулярную формулу, расположение атомов в каждом из этих веществ отличается. Это позволяет называть их структурными изомерами.
Примеры моносахаридов
глюкоза
Глюкоза является важным моносахаридом в том смысле, что она обеспечивает как энергию, так и структуру для многих организм, Молекулы глюкозы могут разрушаться при гликолизе, обеспечивая энергию и прекурсоры для клеточное дыхание, Если клетка в данный момент больше не нужно энергии, глюкоза может храниться путем сочетания ее с другими моносахаридами. Растения хранят эти длинные цепи в виде крахмала, который впоследствии можно разобрать и использовать в качестве энергии. Животные накапливают цепи глюкозы в полисахариде гликогена, который может хранить много энергии.
Глюкоза также может быть связана в длинных цепочках моносахаридов с образованием полисахаридов, которые напоминают волокна. Растения обычно производят это в виде целлюлозы. Целлюлоза является одной из самых распространенных молекул на планете, и если бы мы могли взвесить все это одновременно, она бы весила миллионы тонн. каждый растение использует целлюлозу, чтобы окружить каждую клетку, создавая жесткие клеточные стенки, которые помогают растениям расти и оставаться напыщенный, Без способности моносахаридов соединяться в эти длинные цепи растения были бы плоскими и мягкими.
фруктоза
Хотя фруктоза почти идентична глюкозе, это немного другая молекула. Формула ((CH2O) 6) такая же, но структура сильно отличается. Ниже изображение фруктозы:
Обратите внимание, что вместо карбонильной группы, находящейся на конце молекулы, как в глюкозе, она является вторым атомом углерода. Это делает фруктозу кетозой, а не альдозой. Как и глюкоза, фруктоза все еще имеет 6 атомов углерода, каждый с присоединенной гидроксильной группой. Однако, поскольку кислород с двойной связью во фруктозе существует в другом месте, образуется кольцо немного другой формы. В природе это имеет большое значение в том, как сахар обрабатывается. Большинство реакций в клетках катализируются специфическими ферментами. Каждый моносахарид разной формы нуждается в специфическом ферменте для расщепления.
Фруктоза, поскольку она является моносахаридом, может быть объединена с другими моносахаридами с образованием олигосахаридов. Очень распространенный дисахарид, полученный из растений, сахароза, Сахароза – это одна молекула фруктозы, связанная с молекулой глюкозы через гликозидную связь.
галактоза
Галактоза – это моносахарид, вырабатываемый многими организмами, особенно млекопитающими. Млекопитающие используют галактозу в молоке, чтобы дать энергию своему потомству. Галактоза в сочетании с глюкозой образует дисахаридную лактозу. Связи в лактозе содержат много энергии, и новорожденные млекопитающие создают специальные ферменты, чтобы разорвать эти связи. После отлучения от молока их матери ферменты, которые расщепляют лактозу на моносахариды глюкозы и галактозы, теряются.
Люди, будучи единственным млекопитающим вид который потребляет молоко в зрелом возрасте, разработал некоторые интересные функции фермента. В группах, которые пьют много молока, большинство взрослых способны переваривать лактозу большую часть своей жизни. В популяциях, которые не пьют молоко после отъема, непереносимость лактозы поражает почти всю Население, Хотя моносахариды могут быть расщеплены по отдельности, молекула лактоза больше не может перевариваться. Симптомы непереносимости лактозы (спазмы в животе и диарея) вызваны токсинами, вырабатываемыми бактериями в кишечнике, переваривающими избыток лактозы. Токсины и избыток питательных веществ, которые они создают, повышают общее количество растворенных веществ в кишечнике, заставляя их удерживать больше воды для поддержания стабильного рН.
- дисахарид – Два моносахарида, связанные гликозидной связью.
- олигосахариды – 3-20 моносахаридов, связанных гликозидными связями, обычно используются для перемещения моносахаридов и их хранения в течение короткого времени.
- полисахарид – Многие (более 20) моносахаридов, обычно связанных длинными цепями, используются для хранения или структурной поддержки.
- углевод – Сахар и крахмал, все из моносахаридов.
Классификация простых углеводов
В современной науке применяют разные классификации для определения типов моносахаридов.
Но для начала важно сказать, что существует две формы этих веществ:
- открытая (оксоформа);
- циклическая.
Моносахариды открытой формы – это вещества, молекула которых состоит из карбонильной и нескольких гидроксильных групп. Это значит, что они могут быть альдегидоспиртами и кетоноспиртами. Отсюда и названия групп – альдозы и кетозы.
Моносахариды циклической формы могут создавать так называемые циклы, замыкаясь в кольца. Этот вид вещества более устойчив, поэтому и в природе они представлены в большем количестве.
Кроме того, моносахариды различают по длине углеродной цепи (количеству атомов углерода). Отсюда и систематизация веществ на триозы, тетрозы, пентозы, гексозы и так далее.
Виды углеводов сложного соединения
Что относится к сложным углеводам? Более детально рассмотрим все виды:
- Крахмал. Это вещество является основным полисахаридом в питании человека. Его молекулы состоят из молекул глюкозы, соединённых в длинные цепочки. Из-за длительного процесса отделения молекул это вещество не провоцирует неожиданный скачок уровня сахара в крови и не перегружает поджелудочную железу, как простые углеводы. Оно быстро наполняет желудок, поэтому после его употребления человек очень долго испытывает чувство сытости.
Крахмал представляет собой безвкусный белый порошок, который невозможно растворить в холодной воде.
При контакте с горячей водой он разбухает, образуя клейстер – коллоидный раствор.
В каких продуктах содержатся сложные углеводы крахмала? К продуктам с большой концентрацией данного вещества относится картофель, бурый рис, овсяная и гречневая каши, горох, чечевица, соя, ржаной хлеб и макароны.
- Гликоген. Данный углевод сложного типа состоит из соединённых вместе молекул глюкозы. Когда человек принимает пищу, в его кровь поступает большое количество глюкозы, после чего организм перерабатывает её в гликоген. Когда же её уровень начинает резко падать (например, при тяжёлых физических нагрузках), происходит процесс распада гликогена. Благодаря этому в организме поддерживается стабильное количество глюкозы.
Если говорить про то, где содержатся сложные углеводы гликогена, то тут перечень продуктов будет не сильно большой. На гликогены богаты фруктовые соки, арбузы, изюм, бананы, хурма, инжир и ирга.
- Клетчатка. Именно так называют плотное сплетение растительных волокон, оказывающее положительно влияние на стабильную работу желудка и кишечника. Листья капусты, оболочка бобовых и любых других семян – всё это и называется клетчаткой. Если говорить другими словами, то клетчатка – это углеводы сложного соединения, не сильно утоляющие чувство голода, но всё равно необходимые для человеческого организма.
Клетчатка бывает двух видов: растворимая и нерастворимая. К первому относится фруктовая и овощная мякоть, а ко второму – шелуха и кожура. Оба эти вида одинаково полезны и нужны нашему организму.
- Пектины. Являются полисахаридами, выполняющими роль абсорбентов. При контакте с водой они образуют коллоидную субстанцию вязкой консистенции. К их достоинствам можно отнести то, что они впитывают в себя различные канцерогены, тяжёлые металлы, токсины, а также стабилизируют работу желудочно-кишечного тракта и выводят из кишечника шлаки.
Если говорить про продукты, содержащие эти сложные углеводы, то на ум сразу приходит список, состоящий из корнеплодов, морских водорослей, а также различных ягод (чёрная смородина, клюква, крыжовник, вишня) и овощей (огурцы, картофель, баклажаны).
Изомеры моносахаридов
В составе практически всех моносахаридов есть асимметричные атомы углерода. Благодаря этому существуют два оптических стереоизомера – D и L. При этом глицериновый альдегид принято считать исходным веществом для всех моносахаридов. Все последующие трансформирования происходят в результате удлинения его цепей. D и L формы моносахаридов являются зеркальными отражениями друг друга. В природе чаще встречаются «представители» D-формы, а синтетические вещества преимущественно представлены в виде L-варианта. При этом важно сказать, что обе формы обладают разными свойствами.
Классификация моносахаридов по количеству атомов углерода
К моносахаридам относятся соединения, содержащие от 3 до 8 углеродных атомов. По числу атомов углерода в своем составе они делятся так:
- триозы (два представителя — глицериновый альдегид и диоксиацетон);
- тетрозы (три представителя — эритрулоза, эритроза и треоза);
- пентозы (например, рибоза, арабиноза, ксилоза);
- гексозы (например, глюкоза, галактоза, фруктоза);
- гептозы (например, манногептулоза);
- октозы (например, глюкооктоза).
Моносахариды, содержащие больше 8 атомов углерода, в природе не встречаются.
Биохимические свойства
От функциональных групп моносахаридов зависят и их свойства. Соответственно, они могут вступать в реакции окисления и восстановления.
В результате окисления моносахаридов создаются разные классы кислот. Альдоновые кислоты – последствие окисления альдегидной группы С1 –атома до карбоксильной группы. Альдаровые кислоты возникают после окисления альдегидной группы или первичной спиртовой С6– атома углерода. Альдуроновая кислота создается вследствие окисления первичной спиртовой группы С6-углерода.
Восстановление моносахаридов под воздействием ферментов или других веществ сопровождается образованием полиспиртов, например, сорбитола или рибитола. Последний, кстати, является компонентом витамина В2.
Глюкоза или виноградный сахар
Думаю, нет такого человека, который бы не знал, что такое глюкоза и не пробовал ее. Но не каждый знает ее уникальные свойства и функции, которые она выполняет в человеческом организме. Является прекрасным питательным веществом для нервной системы человека. Поддерживает баланс в организме при физических и психоэмоциональных нагрузках.
Можно даже сказать – это своего рода горючее, которое работает на клеточном уровне. Глюкоза – кристаллическое вещество, без запаха, со сладким вкусом. Хорошо растворима в воде. Используется во многих сферах человеческой деятельности. В организме больше всего «любят» этот простой сахар головной мозг, поперечно-полосатые мышцы.
Суточная потребность в данном виде моноз индивидуальная. Чтобы вычислить эту норму, нужно коэффициент 2,6 умножить на массу вашего тела. Полученное произведение и есть норма. Людям, занимающимся интеллектуальной деятельностью, работникам тяжелого физического труда и спортсменам, суточную потребность в глюкозе следует увеличить, в связи с высокой потребностью клеток в энергии. В организме человека она выполняет следующие функции:
- питает нервные клетки, способствует улучшению памяти;
- поддерживает мышечное сокращение;
- является главным источником энергии;
- утоляет чувство голода;
- участвует в работе печени.
Главными источниками глюкозы являются такие составляющие, как сахар, мед, шоколад, макароны, рис, перловка, курага, изюм, белый хлеб и многие другие. Но, думаю, вы удивитесь, если я скажу, что этот простой сахар есть в сыре, яйцах, печени, сметане.
Функции простых сахаров
Моносахариды в первую очередь являются источниками энергии. Большинство из них, как и другие углеводы, в 1 грамме вещества содержат примерно 4 килокалории.
Мозгу же для адекватного функционирования требуется не меньше 160 г этого сладкого вещества.
Моносахариды не принадлежат к числу незаменимых для организма питательных веществ, однако каждый из представителей «вида» важен для человека своими уникальными функциями. Глюкоза, к примеру, это основное топливо для клеток организма. Фруктоза участвует в метаболических процессах. А галактозу обнаружили в эритроцитах у лиц с третьей группой крови. Моносахарид рибоза является частью дезоксирибонуклеиновой кислоты в хромосомах.
Функция моносахарида
Моносахариды имеют много функций внутри клеток. Прежде всего, моносахариды используются для производства и хранения энергии. Большинство организмов создают энергию, разрушая моносахаридную глюкозу и собирая энергию, выделяемую связями. Другие моносахариды используются для формирования длинных волокон, которые могут использоваться в качестве формы клеточной структуры. Растения создают целлюлозу для выполнения этой функции, в то время как некоторые бактерии может произвести подобное клеточная стенка от немного разных полисахаридов. Даже клетки животных окружают себя сложной матрицей полисахаридов, все из которых сделаны из более мелких моносахаридов.
Моносахариды и сахар в крови
Моносахариды, как и большинство других питательных веществ, всасываются организмом на уровне тонкой кишки. Они могут быть поглощены без предварительной ферментации и расщепления. Более того, все остальные, более сложные углеводы организм «проглатывает» в форме моновеществ. Глюкозу и галактозу человек усваивает легче и быстрее, чем другие углеводы, а для поглощения фруктозы организму требуется больше времени и сил, при этом она всасывается не полностью. После потребления глюкоза и галактоза быстро попадают в кровь и резко повышают уровень сахара, поскольку обладают высоким гликемическим индексом. В это же время фруктоза, благодаря низкому гликемическому показателю, повышает сахар в крови медленнее и мягче.
Потребность в моносахаридах
Лучшие материалы месяца
- Почему нельзя самостоятельно садиться на диету
- 21 совет, как не купить несвежий продукт
- Как сохранить свежесть овощей и фруктов: простые уловки
- Чем перебить тягу к сладкому: 7 неожиданных продуктов
- Ученые заявили, что молодость можно продлить
Обычно более всего в достаточном потреблении моносахаридов нуждаются люди работающие тяжело физически или умственно, а также спортсмены. Дети, в период интенсивного роста, люди с психическими нарушениями, депрессиями, болезнями пищеварительного тракта, слишком малым весом и во время интоксикации также нуждаются в «сладеньком».
А вот кому стоит более тщательно считать калории и потребление углеводов в сутки, так это лицам с ожирением разных стадий, гипертоникам, пожилым, а также ведущим малоподвижную жизнь.
Кроме того, моносахариды необходимы людям с дефицитом и витамина С, так как эти углеводы помогают усвоению названых полезных веществ.
Понять, что организм испытывает нехватку моносахаридов можно по сниженном сахаре в крови, резкому похудению, депрессивных состояниях, а также не покидающему чувству голода. Наоборот, сигналом к уменьшению сладких порций служат дистрофия печени, признаки гипертонии и кислотно-щелочной дисбаланс. Также не стоит злоупотреблять сахарами людям с непереносимостью молочного.
Моносахариды – важная часть нашего ежедневного питания. Они необходимы человеку для пополнения жизненных сил, хорошего настроения и правильной работы мозга. Так позаботьтесь о том, чтобы эти вещества присутствовали в вашем рационе.
В роли питательных веществ
Моносахариды в качестве питательных веществ используются в натуральной и полуискусственной формах.
Но все они играют роль основной «подкормки» для мозга, клетки которого без достаточного количества сахаров не смогли бы правильно работать.
В природе натуральные моносахариды – это:
- глюкоза (декстроза);
- фруктоза;
- галактоза;
- манноза;
- рибоза;
- дезоксирибоза.
Все они являются гексозами, то есть состоят из 6 атомов углерода.
Полуискусственные моносахара
Гексозы (содержат 6 атомов углерода):
- D и L-аллоза;
- D и L-альтроза;
- D и L-фукоза;
- D и L-гудоза;
- D-сорбоза;
- D-тагатоза.
Пентозы (содержат 5 атомов углерода):
- D и L-арабиноза;
- D и L-ликсоза;
- рамноза;
- D-рибоза;
- рибулоза и ее синтетическая форма;
- D-ксилоза (древесный сахар).
Тетрозы (содержат 4 атома углерода):
- D и L-эритроза;
- эритрулоза;
- D и L-треоза.
Примеры продуктов, содержащих моносахариды:
- фрукты и фруктовые соки (глюкоза, фруктоза);
- мед (глюкоза, фруктоза);
- сиропы (глюкоза, фруктоза);
- десертные вина (глюкоза, фруктоза);
- напитки (безалкогольные, энергетики, ликеры), шоколад, молочные десерты (в основном глюкоза).
Классификация моносахаридов по функциональным группам
К моносахаридам относятся многоатомные альдегидо- или кетоспирты, то есть они содержат несколько гидроксильных групп и одну из двух функциональных групп — кето- или альдегидную. Если в состав монозы входит альдегидная группа, ее называют альдозой, если кетонная – кетозой.
Например, к моносахаридам относится углевод, состоящий из 6 углеродных атомов – гексоза, он бывает в виде двух структурных изомеров – альдогексозы и кетогексозы. Первый из них известен под названием глюкоза, второй – фруктоза.
Среди моноз в природе более распространены альдопентозы и альдогексозы, то есть соединения из пяти или шести углеродных атомов, содержащие альдегидную группу.
Характеристика пищевых моносахаров
Глюкоза
Название этого моносахарида с древнегреческого обозначает «сладкий», а в химии глюкоза известна также под названием «виноградный сахар». Содержится в виноградном соке, фруктах, а также есть в крови. Это вещество с формулой С6Н12О6 представляет собой сладкие белые кристаллы, которые довольно легко растворяются в воде.
Этот вид моносахара считается наиболее важным в природе. Глюкоза – составляющий элемент дисахаридов и полисахаридов. В природных условиях образуется в результате фотосинтеза. Также производится из полисахаридов, таких как целлюлоза и крахмал, в результате гидролиза и ферментирования. В процессе ферментирования глюкозы образовываются диоксид углерода и этиловый спирт. И эта способность характерна для всех углеводов, так как в результате позволяет крови транспортировать сахара ко всем клеткам организма. В человеческом организме играет роль поставщика энергии. Является важнейшим веществом для работы мышц.
Фруктоза
Свое второе название – «плодовый, или фруктовый сахар» – фруктоза получила из-за того, что содержится преимущественно в ягодах и фруктах. А вот химики называют это вещество левулозой. Является компонентом сахарозы и лактулозы. И хоть во многих плодах фруктоза содержится в паре с глюкозой, но плодовый сахар является более сладким веществом. Также он входит в состав меда. И что интересно, это единственный вид сахаров, содержащийся в сперме человека и быка.
Главное отличие фруктозы от глюкозы – в неустойчивости к щелочным и кислым растворам. Активно применяется для производства мороженого, как вещество, предотвращающее песчанистость. Употребляемая в больших количествах, вызывает расстройство пищеварения. А также увеличивает концентрацию липидов в крови, что, как полагают, является фактором риска развития кардиологических болезней.
Галактоза
Как правило, она, не встречается в природе, но гидролизуется из лактозы, которая содержится в молоке. Хотя галактоза не так активно растворяется в воде и является менее сладким веществом, чем глюкоза, она имеет ряд других преимуществ. В частности, образует гликолипиды и гликопротеины, которые содержатся во многих тканях.
Моносахарид галактоза представлен сразу в двух формах: циклической и ациклической. Содержится в тканях растений, а также является элементом некоторых полисахаридов, в том числе и бактериальных. Посему нередко становится участником процессов брожения и трансформации в так называемые лактозные дрожжи. В человеческом организме представлена в составе лактозы (молочный сахар) и некоторых других веществ. В результате химических реакций легко трансформируется в глюкозу, что помогает более легкому усваиванию углерода. Также при определенных обстоятельствах способна переходить в галактуроновую или аскорбиновую кислоту. В женском организме галактоза может воспроизводиться из глюкозы, чтобы дальше трансформироваться в лактозу, содержащуюся в молочных железах.
Наличие галактозы обнаружено в молоке, помидорах и многих других овощах и фруктах. В пищевой промышленности галактоза активно используется в качестве активного ингредиента энергетических напитков.
Галактоза обладает разными уникальными свойствами. В частности, она способствует более быстрой потери и затем удержанию веса, служит профилактическим средством против диабета у взрослых. Также является стабильным источником энергии для спортсменов и работающих физически.
Учитывая уникальные возможности галактозы, исследователи все чаще называют ее «сахаром новой эпохи», хотя и признаются, что многое о свойствах этого вещества пока не знают.
Моносахариды свойства: кратко
Физические свойства:
Моносахариды являются твердыми кристаллическими веществами. Все они гигроскопичны, хорошо растворимы в воде, легко образуют сиропы. Растворимость моноз в спирте низкая, в эфире они практически нерастворимы. Растворы моносахаридов имеют нейтральную реакцию по лакмусу и обычно обладают сладким вкусом. Сладость разных моноз различна.
Например, фруктоза приблизительно в три раза слаще глюкозы. Растворы моносахаридов обладают оптической активностью, для них характерно явление мутаротации.
Химические свойства:
- Реакции карбонильных форм моносахаридов
а) Окисление.
Монозы легко окисляются, причем в зависимости от условий окисления образуются различные продукты.
Пример окисления глюкозы:
С помощью сильного окислителя — концентрированной азотной кислоты — концевые группы альдоз (альдегидная и первичноспиртовая) одновременно окисляются в карбоксильные группы, образуя гликаровые кислоты (называемые также сахарными):
Кетозы не окисляются слабыми окислителями.
При действии сильных окислителей происходит расщепление молекул. Так, например, при окислении фруктозы получаются винная и щавелевая кислоты:
Подобно обычным альдегидам, альдозы легко дают реакцию “серебряного зеркала” с аммиачным раствором оксида серебра (реактив Толленса):
Кетозы тоже способны восстанавливать катионы металлов, так как они в щелочной среде изомеризуются в альдозы.
б) Восстановление.
При восстановлении моноз образуются многоатомные спирты, называемые альдитами (глицитами). Эти кристаллические, легко растворимые в воде вещества обладают сладким вкусом и часто используются как заменители сахара (ксилит, сорбит).
Глюкоза при восстановлении дает шестиатомный сахароспирт сорбит, галактоза – дульцит, манноза – манит:
Сорбит часто встречается в различных фруктах, ягодах: в рябине, сливах, абрикосах, вишнях и др. Дульцит содержится во многих растениях, выделяется на поверхности коры деревьев.
Манит содержится в бурых водорослях; плодах (ананас), овощах (морковке, луке).
Восстановление моносахаридов проводят водородом в присутствии металлических катализаторов (палладий, никель).
Шестиатомные спирты — глюцит (сорбит), дульцит и маннит — получаются при восстановлении соответственно глюкозы, галактозы и маннозы.
Восстановление глюкозы в сорбит является одной из стадий промышленного синтеза аскорбиновой кислоты.
- Реакции с участием гидроксильных групп
Гидроксильные группы имеются в открытых и циклических формах моноз, но содержание циклических форм значительно выше, поэтому реакции идут в циклических (полуацетальных ) формах:
Гидроксилы отличаются по реакционной способности: С1-ОН-гликозидный (наиболее реакционноспособный); С6 — первичный; С2-С4 — вторичные.
- Реакции с участием гликозидного гидроксила
При взаимодействии моносахаридов с гидроксилсодержащими соединениями (спиртами, фенолами и др.) в условиях кислотного катализа образуются производные только по гликозидной ОН-группе — циклические ацетали, называемые гликозидами.
Cпиртовые гидроксилы моноз в этих условиях не реагируют.
- Действие кислот
Действие кислот на пентозы и гексозы может быть использовано для их распознования, а именно: при нагревании пентоз с разбавленными кислотами легко происходит их дегидратация (отщепление трех молекул воды ) и образуется летучий гетероциклический альдегид — фурфурол:
Действие кислот на гексозы ведет сначала к образованию 5-гидроксиметилфурфурола, который при кипячении с разбавленными кислотами разлагается с образованием левулиновой и муравьиной кислот:
- Брожение сахаров
Брожение — это сложный процесс расщепления моносахаридов с выделением СО2 под действием ферментов.
Брожению подвергаются сахара, у которых число атомов углерода кратно трем (гексозы).
Брожение гексоз различной конфигурации происходит с неодинаковой легкостью.
Существуют и другие виды брожения.
Процессы брожения сахаров играют важную роль и широко используются в промышленности.
Различают разные виды брожения:
- Образование дисахаридов, полисахаридов
Гликозидная связь имеет очень важное биологическое значение.
С помощью этой связи осуществляется ковалентное связывание моносахаридов в составе олиго- и полисахаридов:
Дисахариды и их применение
Следующий тип углеводных соединений – дисахариды. Они считаются сложными веществами. В результате гидролиза из них образуется две молекулы моносахаридов.
Этот тип углеводов отличается следующими особенностями:
- твердость;
- растворимость в воде;
- слабая растворимость в концентрированных спиртах;
- сладкий вкус;
- цвет – от белого до коричневого.
Основные химические свойства дисахаридов заключаются в реакциях гидролиза (происходит разрыв гликозидных связей и образование моносахаридов) и конденсации (формируются полисахариды).
Встречается 2 типа таких соединений:
- Восстанавливающие. Их особенностью является наличие свободной полуацетальной гидроксильной группы. За счет нее у таких веществ присутствуют восстановительные свойства. К данной группе углеводов относятся целлобиоза, мальтоза и лактоза.
- Невосстанавливающие. У этих соединений нет возможности к восстановлению, поскольку у них отсутствует полуацетальная гидроксильная группа. Наиболее известными веществами этого типа являются сахароза и трегалоза.
Эти соединения широко распространены в природе. Они могут встречаться как в свободном виде, так и в составе других соединений. Дисахариды являются источником энергии, поскольку при гидролизе из них образуется глюкоза.
Лактоза очень важна для детей, поскольку является основным из компонентов детского питания. Еще одной функцией углеводов этого типа является структурная, поскольку они входят в состав целлюлозы, которая нужна для формирования растительных клеток.
Функции
Функция | Характеристика |
Энергетическая | Основной источник энергии. Расщепляются до моносахаридов с последующим окислением до СО2 и Н2О. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии. |
Структурная | Входят в состав оболочек клеток и некоторых органелл. У растений полисахариды выполняют опорную функцию. |
Запасающая | Накапливаются в тканях растений (крахмал) и животных (гликоген). Используются при возникновении потребности в энергии. |
Защитная | Секреты, выделяющиеся разными железами, обогащены углеводами, например глюкопротеидами, защищающими стенки полых органов (пищевод, желудок, бронхи) от механических повреждений, проникновения вредных бактерий и вирусов. |
Свойства
Пищевые полисахариды — основные источники энергии. Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство микроорганизмов не могут переварить целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы. Эти углеводы могут усваиваться некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.
Даже при том, что эти сложные углеводы не очень легко усваиваемы, они важны для питания. Их называют пищевыми волокнами, эти углеводы улучшают пищеварение среди прочей пользы. Основная функция пищевых волокон — это изменение природного содержимого желудочно-кишечного тракта, и изменение всасывания других нутриентов и химических веществ.[7][8] Растворимые волокна связываются с жёлчными кислотами в тонком кишечнике, растворяя их для лучшего усвоения; это в свою очередь понижает уровень холестерина в крови.[9] Растворимые волокна также замедляют всасывание сахара и уменьшают ответную реакцию на него после еды, нормализуют уровень содержания липидов в крови, и после ферментации в толстой кишке синтезируются в короткоцепочные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (пояснение ниже). Хотя нерастворимые волокна и уменьшают риск диабета, механизм их действия до сих пор не изучен.[10]
Пищевые волокна считаются важными составляющими питания, и во многих развитых странах рекомендуется увеличивать их потребление.[7][8][11]